Idempotent Residuated Structures: Some Category Equivalences and Their Applications
نویسنده
چکیده
This paper concerns residuated lattice-ordered idempotent commutative monoids that are subdirect products of chains. An algebra of this kind is a generalized Sugihara monoid (GSM) if it is generated by the lower bounds of the monoid identity; it is a Sugihara monoid if it has a compatible involution ¬. Our main theorem establishes a category equivalence between GSMs and relative Stone algebras with a nucleus (i.e., a closure operator preserving the lattice operations). An analogous result is obtained for Sugihara monoids. Among other applications, it is shown that Sugihara monoids are strongly amalgamable, and that the relevance logic RM has the projective Beth definability property for deduction.
منابع مشابه
Residuated Skew Lattice with a Operation
In this paper, we define hedge operation on a residuated skew lattice and investigate some its properties. We get relationships between some special sets as dense, nilpotent, idempotent, regular elements sets and their hedges. By examples, we show that hedge of a dense element is not a dense and hedge of a regular element is not a regular. Also hedge of a nilpotent element is a nilpotent and h...
متن کاملCayley’s and Holland’s Theorems for Idempotent Semirings and Their Applications to Residuated Lattices
We extend Cayley’s and Holland’s representation theorems to idempotent semirings and residuated lattices, and provide both functional and relational versions. Our analysis allows for extensions of the results to situations where conditions are imposed on the order relation of the representing structures. Moreover, we give a new proof of the finite embeddability property for the variety of integ...
متن کاملRepresentable Idempotent Commutative Residuated Lattices
It is proved that the variety of representable idempotent commutative residuated lattices is locally finite. The n-generated subdirectly irreducible algebras in this variety are shown to have at most 3n+1 elements each. A constructive characterization of the subdirectly irreducible algebras is provided, with some applications. The main result implies that every finitely based extension of posit...
متن کاملA category equivalence for odd Sugihara monoids and its applications
An odd Sugihara monoid is a residuated distributive latticeordered commutative idempotent monoid with an order-reversing involution that fixes the monoid identity. The main theorem of this paper establishes a category equivalence between odd Sugihara monoids and relative Stone algebras. In combination with known results, it swiftly determines which varieties of odd Sugihara monoids are [strongl...
متن کاملFiniteness Properties for Idempotent Residuated Structures
A class K of similar algebras is said to have the finite embeddability property (briefly, the FEP) if every finite subset of an algebra in K can be extended to a finite algebra in K, with preservation of all partial operations. If a finitely axiomatized variety or quasivariety of finite type has the FEP, then its universal first order theory is decidable, hence its equational and quasi-equation...
متن کامل